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Exercise 1. Only the integrability when |z| — oo matters, and when |z| — oo, the function w is
equivalent to

1

1
0= 3 g lal

1
Therefore, if p > —, we have
e

o 1 [~ d 1 1 1
|v(x)|Pdx < — %:—7ﬁ<oo.
. 2r J, aP 2P pav — 1 eP

And since u and v are even, we deduce that
/ lu(x)|Pdz < .
R

1
For p = —, we have
«@
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since 0 < a < 1. Now, we have

1 2
W (z) = —= = - = .
(@) 2 (1+22)%H log (2+22) (14 22)2 (24 22)log? (2 + 22)

Therefore, as |z| — 0o, u is bounded (up to a constant) by

1
|z log [

1

and the previous computation apply a fortiori to show that ' € LP(R) for all — < p < oco. On the other
Q

hand, since for all 0 < 8 < 1 and « > 0, we have

1 1
ePlog (e L )

1
we deduce that u ¢ LI(R) for all 0 < ¢ < —.
o

Exercise 2. This is easy to see since for all z,y € [a, b], we have

u(z) —u(y) = /w o (t)dt.

Therefore, by additivity of the integral, we have by the triangle inequality

/ /()| < / o (8)dt.
@i i=17 %
b

Since / |u/(t)|dt < oo, a classical property of the Lebesgue integral shows that for all € > 0, there exists

m

S fulb) () = 3

i=1

0>0 such that for all disjoint intervals Iy, - , I, C [a,b], we have

Y LN <6 = Z/ [/ (t)|dt < e.
i=1 i=1 Y1

and the propriety follows.
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Exercise 3. 1. First, assume that u € C'([0,1]). Then the boundedness holds since z @ is

bounded. Since u(0) = 0, we write

Therefore, we have

P dx

aP’

/01 |“|§”|i|pda;/01 /OI ol (t)dt
% ( /0 ’ u’(t)dt) — (),

it is easy to show that z — | [} u’(t)dt|p is a C! function and that

d /0z o' (t)dt /Ox o' (t)dt

Since

p p—1

el — !
dx pu(z)

Integrating by parts, we obtain

1 x p T pql 1 x p—1
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Since v’ € C°([0, 1]), notice that as = — 0, we have

and as a consequence,
P

! — 0(x)

P~

1

/Ox o (t)dt

and the integration by parts formula holds. Now, by Holder’s inequality, we have
1 T p—1 1 P
dx |u()[? v
! / !/
[ | [ vwa] < o ([ H000)
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which yields

and

p ,
< [[w]
Le(0,1) P~ 1 Lr([0,1])

and the expected inequality follows (assuming that u # 0; otherwise, the inequality holds trivially).

2. Since u € C°([0,1]) thanks to the Sobolev embedding, if u(0) # 0, then there exists § > 0 and
g > 0 such that |u(z)| > ¢ for all 0 < z < §, which implies that

é P 5 p
/ de > / E—dx = 00.
o |xP o P
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3. w is a bounded function, which implies that u € L1([0, 1]). Furthermore, we have

1

“(x):_x(lﬂog(%))f

Therefore, u’ is integrable locally on ]0, 1], and since

1
/é du = L e*1<oo
o wlog’(3) |log(3)], ’

we deduce that u € WH1(]0,1[). On the other hand, we have

[ ey = [ (1)
= | —loglo — = o0,
o zlog (1) 808\ )1,

o

1
and since x — we) = T~y is equivalent to x — ———5~ as z — 0, we deduce that
T x(1+10g (5)) x log (5)
u(x)
- = ¢ L'([0,1]).

Exercise 4. 1. Integrating by parts, if u € W1(Q), we have for all ¢ € C1(Q,R%)

/ wdivepdr = 7/ Vu - pdz,
Q Q
which implies that
/u divpdr < ||g0||Loo(Q)/ |Vuldz,
Q Q
and
sup {/QU divpdr : o € CLHQLRY), [@ll ooy < 1} < Vullpi ) < oo

by hypothesis.

2. Integrating by parts, we have for all p € C}(] — 1,1[,R)

which shows that

1
sup{ [ H)¢!@) 0 € CHI = LALR) lollmor < 1
= sup {_80(0) tpE Ccl(] -1, 1[7R)7 HQPHLOO([—l,l]) < 1} =1<oo.
Notice that we need only prove the inequality, but it is clear that equality holds in this identity

(by choosing the appropriate bump function as constructed in the lecture notes). However, as H ¢
C°([-1,1]), the Sobolev embedding Wh1(] —1,1[) — C°([~1,1]) shows that H ¢ W11(] —1,1]).
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3. It is easy to see that u is continuous outside 0, and at 0, we simply use the fact that sin is bounded
to see that it is also continuous at x = 0, and therefore continuous everywhere. The issue is that
the derivative blows up at 0. The idea is to use the rapidly oscillatory behaviour of sin(1/z) near
0 to get arbitrarily large contributions in the integral

/1 u(x)y' (x)dz.

—1

For all n > 1, define the piecewise linear function such that for all 0 < k <n

0 for all & € | — !
T
AT k9 8k + 7
Sk+7)&k+5) [ 1 1 1
_ for all
2 skr7 " oA kT 8k 15
on(x) = T 1
-1 for all x €
8%k +5 8k+3)
(8k + 3)(8k + 1) 1 1 1]
Ber)BE+ D) (4 for all
2 TRk R T Ry

and ¢,, vanishes otherwise. Notice that —1 < ¢,, <0 and that ¢,, € VVO1 (] = 1,1[). Furthermore,

for all we have

<zx< ! ,
8k+7~ T 8k+5

which implies that
1< (X)) < V2
4x

which shows by an integration by parts that

SFF5 . T , V2 o1
— dx > —
/1 xsm(4x) o, (x)dx > 5 ,

8k+T7

and likewise

Therefore, we deduce that for all n € N, we have
! V2 & 1 1
/
> Yo e T
/_1“(9”)@"(”3) =7 kZ:O <8k+3 * 8k+7) a0
Now, we need only approximate each ¢,, by a function v, € C}(] —1,1[) such that
Hd’n - <PnHW1,1(]_171[) <1 and HwnHLx(]—lJ[) <1

which yields



EPFL - Spring 2025 Alexis Michelat
Calculus of Variations Mathematics Section Exercises
Série 4 14 March 2025

Viw - 1102 [ waieis = [ @@t [ ul) @) - ¢ @) do

-1 —1 -1

1
> [ ul@)en@de =l 190 = Pulwosgr

-1

1
> [ u@en@s =l =2,

1
Since —1 < ¢, < 0, up to replacing ,, by 3¢ @ standard convolution will yield the expected

bound ||1/JnHLOO([_1,1]) < 1 on the approximation and the proof is complete.



